Изучение древних систем счисления и решение задачи с их применением.

Исследовательская работа:

«Системы счисления древнего мира»

«Математика – царица наук» - гласит известная поговорка. Главной её частью естественно являются цифры. Сейчас в мире используется более или менее общая, хорошо сформированная система. Но что было 3, 4, 5 тыс. лет назад?

И поэтому нашей главной целью является дать ответы на следующие вопросы:

  • Какие государства имели более развитые системы счисления?
  • Какие системы они использовали?
  • Как развивались системы счисления?

Задачи: изучение материалов про системы счисления древности, решение современной задачи с использованием всех исследуемых систем.

Предмет исследования системы счисления древности.

Перед началом поиска информации мы определили следующие государства для изучения:

ØДревний Египет

ØВавилон

ØДревняя Греция

ØРим

ØКитай

ØИндия

1.Древний Египет

Расшифровка системы счисления, созданной в Египте во времена первой династии (ок. 2850 до н.э.), была существенно облегчена тем, что иероглифические надписи древних египтян были аккуратно вырезаны на каменных монументах. Из этих надписей нам известно, что древние египтяне использовали только десятичную систему счисления. Единицу обозначали одной вертикальной чертой, а для обозначения чисел, меньших 10, нужно было поставить соответствующее число вертикальных штрихов. Для обозначения числа 10, основания системы, египтяне вместо десяти вертикальных черт ввели новый коллективный символ, напоминающий по своим очертаниям подкову или крокетную дужку. Множество из десяти подковообразных символов, т.е. Число 100, они заменили другим новым символом, напоминающим силки; десять силков, т.е. Число 1000, египтяне обозначили стилизованным изображением лотоса. Продолжая в том же духе, египтяне обозначили десять лотосов согнутым пальцем, десять согнутых пальцев – волнистой линией и десять волнистых линий – фигуркой удивленного человека. В итоге древние египтяне могли представлять числа до миллиона. Самые древние из дошедших до нас математических записей высечены на камне, но наиболее важные свидетельства древнеегипетской математической деятельности запечатлены на гораздо более хрупком и недолговечном материале – папирусе. Два таких документа – папирус Ринда, или египетского писца Ахмеса (ок. 1650 до н.э.) И московский папирус, или папирус Голенищева (ок. 1850 до н.э.) – служат для нас основными источниками сведений о древнеегипетских арифметике и геометрии. В этих папирусах более древнее иероглифическое письмо уступило место скорописному иератическому письму, и это изменение сопровождалось использованием нового принципа обозначения чисел. Иероглифическая запись чисел использовалась преимущественно в официальных документах и текстах. Еще позднее иератическая система обозначения чисел уступила место демотическим системам записи. Введение египтянами цифровых обозначений ознаменовало один из важных этапов в развитии систем счисления, так как дало возможность существенно сократить записи. Однако их операции с дробями продолжали оставаться на примитивном уровне, так как они знали лишь аликвотные дроби (т.е. Дроби с числителем 1) и каждую дробь записывали в виде суммы аликвотных дробей, например, дробь 2/43 они записали бы так: 1/42 + 1/86 + 1/129 + 1/301. В этих системах счисления над символом, обозначающим знаменатель, ставился специальный знак. В искусстве оперирования дробями египтяне значительно уступали жителям Месопотамии

2.Вавилон

Письменность шумеров является, по-видимому, столь же древней, как и письменность египтян. Развитие способов представления чисел в Месопотамской долине вначале шло так же, как и в долине Нила, но затем жители Междуречья ввели совершенно новый принцип. Вавилоняне делали записи острой палочкой на мягких глиняных табличках, которые затем обжигались на солнце или в печи. Эти записи оказались исключительно долговечными, а потому, в отличие от египетских папирусов, дошедших до нас в весьма малом числе экземпляров, в музеях мира хранятся десятки тысяч клинописных табличек. Однако жесткость материала, на котором жители Месопотамии делали записи, оказала глубокое влияние на развитие числовых обозначений. Через некоторое время после того, как Аккад завоевал шумеров, система счисления в Месопотамии стала шестидесятеричной, хотя сохранилось также и основание 10. Казавшееся правдоподобным предположение относительно того, почему выбор пал на число 60 как на основу вавилонской системы счисления, и утверждавшие, будто это связано с тем, что продолжительность земного года считалась равной 360 дням, не получило подтверждения. Ныне принято считать, что шестидесятеричная система была выбрана из метрологических соображений: число 60 имеет много делителей.

3.Древняя Греция

В Древней Греции имели хождение две основных системы счисления – аттическая (или геродианова) и ионическая (она же александрийская или алфавитная). Аттическая система счисления использовалась греками, по-видимому, уже к 5 в. до н.э. По существу это была десятичная система (хотя в ней также было выделено и число пять), а аттические обозначения чисел использовали повторы коллективных символов. Черта, обозначавшая единицу, повторенная нужное число раз, означала числа до четырех. После четырех черт греки вместо пяти черт ввели новый символГ, первую букву слова «пента» (пять) (буква Г употреблялась для обозначения звука «п», а не «г»). Дойдя до десяти, они ввели еще один новый символD, первую букву слова «дека» (десять). Так как система была десятичной, грекам потребовались новые символы для каждой новой степени числа 10: символHозначал 100 (гекатон),X– 1000 (хилиои), символM– 10000 (мириои или мириада).

Ионическая система первоначально не сильно потеснила уже установившуюся аттическую или акрофоническую (по начальным буквам слов, означавших числительные) системы исчисления. По-видимому, официально она была принята в Александрии во времена правления Птолемея Филадельфийского и в последующие годы распространилась оттуда по всему греческому миру, включая Аттику. Переход к ионической системе счисления произошел в золотой век древнегреческой математики и, в частности, при жизни двух величайших математиков античности. Есть нечто большее, чем просто совпадение, в том, что именно тогда Архимед и Аполлоний работали над усовершенствованием системы обозначения больших чисел. Архимед, придумавший схему октад (эквивалентную современному использованию показателей степени числа 10) гордо заявлял в своем сочинении «Псаммит» («Исчисление песчинок»), что может численно выразить количество песчинок, необходимых для того, чтобы заполнить всю известную тогда Вселенную. Изобретенная им система обозначения чисел включала число, которое ныне можно было бы записать в виде единицы, за которой следовало бы восемьдесят тысяч миллионов цифр.

4.Рим

Римские обозначения чисел известны ныне лучше, чем любая другая древняя система счисления. Объясняется это не столько какими-то особыми достоинствами римской системы, сколько тем огромным влиянием, которым пользовалась римская империя в сравнительно недавнем прошлом. Этруски, завоевавшие Римскую империю в 7 в. до н.э., испытали на себе влияние восточно-средиземноморских культур. Этим отчасти объясняется сходство основных принципов Римской и аттической систем счисления. Обе системы были десятичными, хотя в обеих системах счисления особую роль играло число пять. Обе системы использовали при записи чисел повторяющиеся символы. Старыми римскими символами для обозначения чисел 1, 5, 10, 100 и 1000 были, соответственно, символыI,V,X,Q(илиЕ, илиД) иf. Хотя о первоначальном значении этих символов было написано много, их удовлетворительного объяснения у нас нет до сих пор. Дробей римляне избегали так же упорно, как и больших чисел.

5.Китай

Одна из древнейших систем счисления была создана в Китае, а также в Японии. Эта система возникла как результат оперирования с палочками, выкладываемыми для счета на стол или доску. Числа от единицы до пяти обозначались, соответственно, одной, двумя и т.д. палочками, выкладываемыми вертикально, а одна, две, три или четыре вертикальные палочки, над которыми помещалась одна поперечная палочка, означали числа шесть, семь, восемь и девять. Первые пять кратных числа 10 обозначались одной, двумя, пятью горизонтальными палочками, а одна, две, три и четыре горизонтальные палочки, к которым сверху приставлялась вертикальная палочка, означали числа 60, 70, 80 и 90.

Во второй китайской системе счисления для обозначения первых девяти целых чисел или символов используют девять различных знаков и одиннадцать дополнительных символов для обозначения первых одиннадцати степеней числа 10. В сочетании с умножением и вычитанием это позволяло записывать любое число меньше триллиона. Если один из символов, обозначающих первые девять целых чисел, стоит перед (при чтении слева направо) символом, означающим степень числа 10, то первое нужно умножить на второе, если же символ одного из девяти первых целых чисел стоит на последнем месте, то это число надлежит прибавить к обозначенному предыдущими символами.

6.Индия

Письменных памятников древнеиндийской цивилизации сохранилось очень немного, но, судя по всему, индийские системы счисления проходили в своем развитии те же этапы, что и во всех прочих цивилизациях. На древних надписях из Мохенджо-Даро вертикальная черточка в записи чисел повторяется до тринадцати раз, а группировка символов напоминает ту, которая знакома нам по египетским иероглифическим надписям. В течение некоторого времени имела хождение система счисления, очень напоминающая аттическую, в которой для обозначения чисел 4, 10, 20 и 100 использовались повторения коллективных символов. Эта система, которая называется кхарошти, постепенно уступила место другой, известной под названием брахми, где буквами алфавита обозначались единицы (начиная с четырех), десятки, сотни и тысячи. Переход от кхарошти к брахми происходил в те годы, когда в Греции, вскоре после вторжения в Индию Александра Македонского, ионическая система счислениявытесни

Объявления
Начинается проектный практикум для студентов УрФУ

проектный практикум 2 курса

проектный практикум 3 курса

проектный практикум 4 курса

Молодежный космический форум - 2018 (V Семихатовские чтения)О Форуме-2018 Новое

Школа наставников - 2018 “Как создать проект в новом технологическом укладе” Актуальное

Партнеры:

ИнФО УрФУ - Генеральный партнер в проведении проектной практики в июне-июле 2017 года

Роботология - Российское оборудование для программирования и конструирования роботов

Уральский клуб нового образования - общественная организация, которая разрабатывает и реализует социально-образовательные проекты

Архив событий:

Проектная практика для студентов Института фундаментального образования УрФУСобытие

Молодежный космический форум - 2017 (Четвертые Семихатовские чтения)Конкурс

Выбор темы работы для участия в IV Семихатовских чтенияхО Форуме-2017

Подписка на новости
Контакты

Адрес: г. Екатеринбург, ул. Мамина-Сибиряка 145, к. 1119 (на карте)

Тел.: +7 (343) 355-93-88

info@cosmoport.club